Cauchy’s Theorem for Abelian Groups
If G is a finite abelian group and p is a prime that divides $|G|$, then $\exists g \in G$ such that $|g| = p$.

Proof.

We shall use Strong Induction on the order of G to prove it. When $|G| = 2$, the only prime that divides $|G|$ is 2. Let g be a nonidentity element in G, then g^2 is the identity, hence $|g| = 2$. Now assume the theorem holds for all abelian groups of order less than n and suppose $|G| = n$. Let a be any nonidentity element of G. Then the order of a is a positive integer and is therefore divisible by some prime q (by the Fundamental Theorem of Arithmetic). Then $|a| = qt$ for some positive integer t. Let $b = a^t$, then $|b| = q$. If $q = p$, then we are done.

If $q \neq p$, let N be cyclic subgroup $\langle b \rangle$. Since G is abelian, N is normal and $|N| = q$. Then $|G/N| = |G|/|N| = n/q$ (by Lagrange’s Theorem). But $n/q < n$. Thus, by the induction hypothesis, the theorem is true for G/N. Note that $|G| = |N||G/N| = q|G/N|$. Since $q \neq p$, p divides $|G/N|$. Thus, G/N contains an element of order p, say, Nc. Note that $Nc^p = (Nc)^p = Ne$ (where e denotes the identity of G), thus, $c^p \in N$. Also,
\[c^{pq} = (c^p)^q = e. \] Thus, \(c \) must have order dividing \(pq \). Note that \(c \) cannot have order 1, for otherwise \(Nc \) would have order 1 instead of \(p \). Also, \(c \) cannot have order \(q \), for otherwise \((Nc)^q = N \implies p|q \), contradicting the fact that \(q \) is a prime different from \(p \). Thus, we are left with the possibilities that \(|c| = p \) or \(|c| = pq \). In the first case, set \(g = c \). If it is the latter case, set \(g = c^q \). Therefore, the theorem holds for abelian groups of order \(n \), for any positive integer \(n \).

Q.E.D.